rknn: an R Package for Parallel Random KNN Classification
with Variable Selection

E. James Harner'", Shenggiao Li2, Donald A. Adjeroh?

1. Department of Statistics, West Virginia University

2. UPMC Health Plan

3. Lane Department of Computer Science and Electrical Engineering, West Virginia University
*Contact author: jharner@stat.wvu.edu

Keywords: Machine Learning, K-Nearest Neighbor, High Dimensional Data, Parallel Computing

Random KNN (RKNN) is a novel generalization of traditional nearest-neighbor modeling. Random KNN
consists of an ensemble of base k-nearest neighbor models, each constructed from a random subset of
the input variables. A collection of r such base classifiers is combined to build the final Random KNN
classifier. Since the base classifiers can be computed independently of one another, the overall computation
is embarrassingly parallel.

Random KNN can be used to select important features using the RKNN-FS algorithm. RKNN-FS is an
innovative feature selection procedure for “small n, large p problems.” Empirical results on microarray
data sets with thousands of variables and relatively few samples show that RKNN-FS is an effective feature
selection approach for high-dimensional data. RKNN is similar to Random Forests (RF) in terms of classi-
fication accuracy without feature selection. However, RKNN provides much better classification accuracy
than RF when each method incorporates a feature-selection step. RKNN is significantly more stable and
robust than Random Forests for feature selection when the input data are noisy and/or unbalanced. Further,
RKNN-FS is much faster than the Random Forests feature selection method (RF-FS), especially for large
scale problems involving thousands of variables and/or multiple classes.

Random KNN and feature selection algorithms are implemented in an R package rknn. The time com-
plexity of the algorithm, including feature selection, is O(rkpnlogn), assuming the number of variables
randomly selected in a base classifier is m = log p. This choice of m, in contrast to /p, reduces the time
complexity from exponential time to linear time. However, it is important to choose r sufficiently large
to ensure adequate variable coverage. By paralleling the code in rknn, the time can be reduced linearly
depending on the number of cores or compute nodes. The basic rknn package has been extended to support
parallel processing using the parallel package. The code detects whether the system is Posix-based and
then determines whether a “FORK” or “PSOCK?” cluster is formed. Parallelization is also supported using
mclapply. We will show how to apply the Random KNN method via the parallelized rknn package to
high-dimensional genomic data.

References

Li S, Harner EJ, Adjeroh DA (2011). Random KNN feature selection—a fast and stable alternative to
Random Forests. BMC Bioinformatics, 12(1):450.


mailto:jharner@stat.wvu.edu

