rknn: an R Package for Parallel Random KNN Classification with Variable Selection

E. James Harner1,*, Shengqiao Li2, Donald A. Adjeroh3

1. Department of Statistics, West Virginia University
2. UPMC Health Plan
3. Lane Department of Computer Science and Electrical Engineering, West Virginia University
*Contact author: jharner@stat.wvu.edu

Keywords: Machine Learning, K-Nearest Neighbor, High Dimensional Data, Parallel Computing

Random KNN (RKNN) is a novel generalization of traditional nearest-neighbor modeling. Random KNN consists of an ensemble of base k-nearest neighbor models, each constructed from a random subset of the input variables. A collection of r such base classifiers is combined to build the final Random KNN classifier. Since the base classifiers can be computed independently of one another, the overall computation is embarrassingly parallel.

Random KNN can be used to select important features using the RKNN-FS algorithm. RKNN-FS is an innovative feature selection procedure for “small n, large p problems.” Empirical results on microarray data sets with thousands of variables and relatively few samples show that RKNN-FS is an effective feature selection approach for high-dimensional data. RKNN is similar to Random Forests (RF) in terms of classification accuracy without feature selection. However, RKNN provides much better classification accuracy than RF when each method incorporates a feature-selection step. RKNN is significantly more stable and robust than Random Forests for feature selection when the input data are noisy and/or unbalanced. Further, RKNN-FS is much faster than the Random Forests feature selection method (RF-FS), especially for large scale problems involving thousands of variables and/or multiple classes.

Random KNN and feature selection algorithms are implemented in an R package \texttt{rknn}. The time complexity of the algorithm, including feature selection, is $O(rkp n \log n)$, assuming the number of variables randomly selected in a base classifier is $m = \log p$. This choice of m, in contrast to \sqrt{p}, reduces the time complexity from exponential time to linear time. However, it is important to choose r sufficiently large to ensure adequate variable coverage. By parallelizing the code in \texttt{rknn}, the time can be reduced linearly depending on the number of cores or compute nodes. The basic \texttt{rknn} package has been extended to support parallel processing using the \texttt{parallel} package. The code detects whether the system is Posix-based and then determines whether a “FORK” or “PSOCK” cluster is formed. Parallelization is also supported using \texttt{mclapply}. We will show how to apply the Random KNN method via the parallelized \texttt{rknn} package to high-dimensional genomic data.

References